
Abstract- We propose and implement a learning to grasp system 
inspired from the development of reaching and grasping in 
infants, and the neurophysiology of the monkey premotor 
cortex. The system is composed of a virtual 19 DOF kinematics 
arm/hand and a learning mechanism that enables it to perform a 
successful grasp. The learning is based on “motor babbling”. 
The model performs open hand reaches to the vicinity of the 
targets, which human infants younger than 4 moths of age 
appear to do. The contact of the hand with the object triggers an 
enclosure of the hand simulating the palmer reflex, 
characteristic to infants that are younger than 6 months of age. 
The varying degree of enclosure of each finger and the 
randomness in the reaching phase enables the system to explore 
the grasp configuration space. The learning scheme employed is 
a Hebbian one. 
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I. INTRODUCTION 

 
We can perform a reach and grasp action for many objects in 
our daily lives effortlessly. However, the task is not trivial at 
all. The reach and grasp should be planned in ahead for the 
anticipation of the grasp configuration suitable for the object 
[1]. As humans have very dexterous hands the possible grasps 
that can be applied to an object is many. Iberall and Arbib [2] 
introduced the theory of virtual fingers and opposition space. 
The term virtual finger is used to describe the physical entity 
(one or more fingers, the palm of the hand, etc.) that is used 
in applying force and thus includes specification of the region 
to be brought in contact with the object (what we might call 
the "virtual fingertip"). Figure 1 shows three types of 
opposition: those for the precision grip, power grasp, and side 
opposition. Each of the grasp types is defined by specifying 
two virtual fingers, VF1 and VF2, and the regions on VF1 
and VF2 which are to be brought into contact with the object 
to grasp it. Note that the "virtual fingertip" for VF1 in palm 
opposition is the surface of the palm, while that for VF2 in 
side opposition is the side of the index finger. The grasp 
defines two "opposition axes": the opposition axis in the hand 
joining the virtual finger regions to be opposed to each other, 
and the opposition axis in the object joining the regions where 
the virtual fingers contact the object. Visual perception 
provides affordances (different ways to grasp the object); 
once an affordance is selected, an appropriate opposition axis 
in the object can be determined. The task of motor control is 
to preshape the hand to form an opposition axis appropriate to 
the chosen affordance, and to so move the arm as to transport 
the hand to bring the hand and object axes into alignment. 
During the last stage of transport, the virtual fingers move 

down the opposition axis (the "enclose" phase) to grasp the 
object just as the hand reaches the appropriate position.  
  

 
Figure 1. Each of the 3 grasp types here is defined by specifying 
two "virtual fingers", VF1 and VF2, which are groups of fingers 
or a part of the hand such as the palm which are brought to bear 
on either side of an object to grasp it. The specification of the 

virtual fingers includes specification of the region on each virtual 
finger to be brought in contact with the object. A successful grasp 
involves the alignment of two "opposition axes": the opposition 

axis in the hand joining the virtual finger regions to be opposed to 
each other, and the opposition axis in the object joining the 

regions where the virtual fingers contact the object. (adapted from 
[2]) 

The macaque inferior premotor cortex has been identified as 
being involved in reaching and grasping movements [3]. This 
region has been further partitioned into two sub-regions: F5, 
the rostral region, located along the arcuate and F4, the caudal 
part. The neurons in F4 appear to be primarily involved in the 
control of proximal movements [4], whereas the neurons of 
F5 are involved in distal control [3].  
The onset of reaching and grasping marks a significant 
achievement in infants functional interactions with their 
surroundings. The advent of voluntary grasping of objects is 
preceded by several weeks in which infant engages in arm 
movements and fisted swipes in the presence of visible 
objects [5]. For many years, it has been accepted that the 
earliest accurate reaching behaviour is visually guided and 
appears around 3-5 months [6]. The term visually guided 
reaching generally refers to the infant’s having available 
continuous vision of the hand and target, whereas visually 

A BIOLOGICALLY INSPIRED LEARNING TO GRASP SYSTEM 
 

E. Oztop, M. A. Arbib 

Department of Computer Science, University of Southern California, CA, USA 
 

a) Pad Opposition 
b) Polm Opposition 

c) 51d8 Opposition 



Report Documentation Page

Report Date 
25OCT2001

Report Type 
N/A

Dates Covered (from... to) 
- 

Title and Subtitle 
A Biologically Inspired Learning to Grasp System

Contract Number 

Grant Number 

Program Element Number 

Author(s) Project Number 

Task Number 

Work Unit Number 

Performing Organization Name(s) and Address(es) 
Department of Computer Science, University of Southern
California, CA

Performing Organization Report Number 

Sponsoring/Monitoring Agency Name(s) and Address(es) 
US Army Research, Development & Standardization Group
(UK) PSC 802 Box 15 FPO AE 09499-1500

Sponsor/Monitor’s Acronym(s) 

Sponsor/Monitor’s Report Number(s) 

Distribution/Availability Statement 
Approved for public release, distribution unlimited

Supplementary Notes 
Papers from the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
25-28 OCT 2001, Istanbul, Turkey. See also ADM001351 for entire conference on cd-rom.

Abstract 

Subject Terms 

Report Classification 
unclassified

Classification of this page 
unclassified

Classification of Abstract 
unclassified 

Limitation of Abstract 
UU

Number of Pages 
4



elicited reaching refers to the vision of the target, followed by 
a ballistic hand movement. Clifton and her co-workers [6] 
questioned the visually guided reaching hypothesis. They 
tested seven infants repeatedly between 6 and 25 weeks of 
age to examine whether infants require vision of their hand 
when first beginning to reach for, contact and grasp objects. 
They used glowing or sounding objects for the dark 
condition. Infants first contacted the object in both dark and 
light conditions at almost the same ages (mean ages: for light, 
12.3 weeks; for dark 11.9). Infants first grasped the object in 
light condition at 16.0 weeks and in the dark at 14.7 weeks 
(not a statistically significant difference). Clifton and her co-
workers interpreted the results against the visual guidance 
hypothesis. They stated that since infants could not see their 
hand or arm in the dark, their early success in contacting the 
glowing and sounding objects indicated that proprioceptive 
cues, not sight of the limb guided their early reaching. 
Reaching in the light developed in parallel with reaching in 
the dark, suggesting that visual guidance of the hand is not 
necessary to achieve object contact either at the onset of 
successful reaching or in the succeeding weeks. It is also 
noteworthy to underline the fact that the infants showed great 
individual differences in onset behaviours. Onset touch varied 
between 7 and 16 weeks, while onset for grasp varied 
between 11 and 19 weeks. The greatest discrepancy (light 
versus dark conditions) in onset of reach and grasp was 4 
weeks. There were three infants (out of seven) with this 
discrepancy. Interestingly for all the three infants the 
behaviour occurred earlier in the dark. However the findings 
does not conflict the traditional view of visual guidance for 
reaching that is reported in the literature as it would be 
unreasonable to claim that infants do not use vision 
information when it is available [6]. The infant, when 
contacted with the object, will occasionally try to grasp the 
object. The enclosure reflex will be with the infant until six 
moths of age and it will take 4 more weeks to stabilise the 
grasp [6]. However, the fractionated control of finger 
movements will not be possible since this task requires 
cortico-motoneuronal system, which has not been developed 
by the age of reflex grasping and early voluntary grasping [7]. 
Therefore, it is unlikely that the premotor specialisation for 
the different types of grasps that Rizzolatti group [3] has 
found be formed at this age yet. Infants will need to 
experience more to be able perform adult-like grasps. Before 
nine months old age, the infants grasp lack the anticipation of 
the orientation and the size of the object [8]; they adjust their 
grasps after touching the object. In contrast, the adults adjust 
their distance between the thumb and the other fingers 
according to the size of the object during the hand transport. 
Furthermore, infants younger than nine months old are 
physically able to vary their grip size, for they can spread 
their fingers farther apart once they have felt a large object 
[9]. 
 
 

II. METHODOLOGY 
 
In this study the objective was to mimic the grasp 
development in infants and premotor functionality for grasp 
actions with a computer simulation. We developed the grasp 
learning system using Java language. The system is 
composed of a 19 DOF virtual arm that can be controlled 
manually through a user interface or automatically (e.g. for 
learning and testing) and a hybrid neural control circuit. We 
modeled the hand as 12 DOF (4 for the thumb and 2 for each 
finger). The wrist and shoulder have 3 DOF and the elbow 
has 1 DOF. We used forward kinematics to simulate the 
motion of the arm and hand. The system can detect the 
collisions of each segment on the arm with the objects in the 
workspace. Since in this study we focused on discovering 
grasp configurations appropriate for the objects, we did not 
include the learning of reach task (i.e. learning the inverse 
kinematics map). Instead we solved the inverse kinematics 
problem with the pseudo-inverse of the Jacobian of the 
forward kinematics transformation. The Figure 2 shows the 
virtual arm we used in our simulations after a precision grip. 
The neural part of the control represents the premotor area F5 
of monkey. The circuit is trained using the feedback signaled 
by the attempted grasp action. The neural network we used 
informs the hand what level of enclosure is required for each 
hand joints. The conventional (i.e. non-neural) part of the 
controller performs the reach and orienting the hand towards 
the object. The learning we used is hebbian: the connections 
that are likely to be involved in producing successful grasp 
parameters are strengthened and the ones that tend to fail to 
do so are weakened.   

 Figure 2. A precision grip performed by the virtual arm model. 
The precision grip is generated using our non-neural grasp 

algorithm. 

Before attempting to train the system, we implemented a 
conventional (i.e. non-neural) grasp (precision grip) solver. 
This solver planned the grasp shown in Figure 2. The 
algorithm we developed for the grasp planning is as follows. 
• Determine the opposition axis to grasp the object.  
• Compute the two (outer) points A and B at which the 

opposition axis intersects the object surface. They serve 
as the contact points for the virtual fingers that will be 
involved in the grasp. 

• Assign the real fingers to virtual fingers. The particular 
heuristic we used in the experiments was the following. 



If the object is on the right [left] with respect to the arm 
then thumb is assigned to the point A if A is on the left of 
[at a lower level than] B otherwise thumb is assigned to 
B. The index finger is assigned to the remaining point. 

• Determine an approximate target position C, for the 
wrist. Mark the target for wrist on the line segment 
connecting the current position of the wrist and the target 
for thumb a fixed length (determined by the thumb 
length) away from the thumb target. 

• Solve the inverse kinematics for only the wrist reach 
(ignore the hand). 

• Solve the inverse kinematics for grasping. Using the sum 
of distance squares of the finger tips to the target contact 
points do a random hill climbing search to minimize the 
error. Note that the search starts with placing the wrist at 
point C. However, the wrist position is not included in 
the error term. 

• The search stops when the simulator finds a 
configuration that makes the error close to zero (success) 
or after a fixed number of steps (failure to reach). In the 
success case the final configuration is returned as the 
solution for the inverse kinematics for the grasp. 
Otherwise failure-to-reach is returned. 

• Execute the reach and grasp. At this point the simulator 
knows the desired target configuration in terms of joint 
angles. So what remains to be done is to perform the 
grasp in a realistic way (in terms of kinematics).  

• The simplest way to perform the reach is to linearly 
change the joint angles from the initial configuration to 
the target configuration. But this does not produce a bell 
shaped velocity profile (not exactly a constant speed 
profile either because of the non-linearity in going from 
joint angles to end effector position.  

• To get a bell shaped velocity we modify the idea of 
linearly changing the joint angles little bit. We simply 
modulate the change of time by replacing the time with a 
3rd order polynomial that will match our constraints for 
time (starts at 0 climbs up to 1 monotonically). Note that 
we are still working in the joint space and our method 
may suffer from the non-linearity in transforming the 
joint angles to end effector coordinates. However our 
empirical studies showed that a satisfactory result, for 
our purposes, can be achieved with this strategy. 

 
 

 
III. RESULTS 

 
In this section we present the grasps configurations that 

our grasp learning system discovered. The training was 
performed as follows. The neural network representing area 
F5 of premotor cortex generates a (initially random) offset 
vector and a series of speed values for each joint of the 
fingers (initially random). The offset vector is added to the 
center of mass of the target object to obtain a reach target 
location. Note that this point may be in, on or outside the 

object. Then a reach is initiated to this point. The reach is 
performed with the palm open facing the object. During the 
transport the detection of a collision of causes a reflex 
enclosure of the hand. However, as mentioned earlier the 
speeds of the joint rotations are determined by the output of 
the neural network. If the enclosure leads to a successful 
grasp the connections that contributed to the generation of the 
parameters (offset and speed values) are strengthened. If the 
enclosure leads a failure then the connections that contributed 
to the generation of the parameters are weakened.  
Figure 3 shows a learned power grasp directed to a sphere 
approximated as dodecahedron. 
 

 
Figure 3. A power grip performed by the virtual arm model. The grasp 

parameters (hand offset and the joint speeds) are generated by the trained 
network. 

 
Figure 4 demonstrates the discovery of palm opposition grasp 
(kind of power grasp without thumb being assigned to any 
virtual fingers) that has been introduced in Figure 1, part b. 
For this size object the network produced almost zero thumb 
speed.  Where as for Figure 3, the thumb had to enclose the 
object so the thumb joints had non-zero speed. 
 

 
Figure 4. A palm opposition grip performed by the virtual arm model. 

The grasp parameters (hand offset and the joint speeds) are generated by the 
trained network. 

 
The Figure 5 and 6 shows the precision grips that the network 
was able to learn. The network was not as good as in the 
earlier cases in generating this kind of grip. This is probably 



because of the orientation of the palm is not learned. In order 
to produce a successful precision pinch it is not necessary that 
the palm normal coincides with the object. The further 
simulation will address the learning of wrist rotations as well. 
 

 
Figure 5. Precision pinch generated using network output parameters for the 

small sphere (approximated as a dodecahedron) 
 

In figure 5 the discovered grasp is actually a mixture of 
power grasp (a single finger acting as virtual fingers 1 and 2) 
and precision grip. The network generated three virtual 
fingers for the grasp (two from the index finger and one from 
the thumb).  
 

 
Figure 6. Precision grip generated using network output parameters for the 
cube shaped object. 
 
However the precision grip in Figure 6 generated two virtual 
fingers (the thumb and index finger) which is more closer 
what usually the humans use for grasping small objects. 
 

IV. DISCUSSION AND CONCLUSION 
 

We have presented a hybrid system that can mimic grasp 
configuration learning by motor babbling. We showed that 
certain grasp configurations can be associated with certain 
objects with a simple mechanism such as palmer reflex that 
the infants born with. The palmer reflex enables the hand to 
enclose upond contact with object during a reach and the 
feedback on the success of grasp mediates learning during 
motor babbling. The shortcomings of our implementations are 
the kinematics (i.e. no dynamics) implementation of the 
arm/hand apparatus and the the lack of detailed modeling 
required to transfer the haptic and proprioceptive feedback 

from the hand to the F5 via somatosensory cortex which is 
the current focus of our study. It would be very interesting to 
implement a very accurate 3D model of the hand to see 
whether we can produce the daily life grasping examples. Our 
simulation system has not force simulation, however in 
reality considerable amount of grasp planning is devoted to 
weight anticipation and balancing the torque generated by the 
gravity. Nevertheless our grasp learning system is a step 
towards a full dynamics simulation with a full neural 
implementation, which can discover realistic grasps. 
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